

Lamination of Flexible Materials for Packaging

About the Seminar:

Lamination of Flexible Materials for Packaging is designed to give engineers and others an understanding of lamination processes and the properties of the resultant laminates Utilized in flexible packaging. Monolayer flexible materials often fall short in delivering the needed properties. Lamination is an important technique utilized to combine materials to assure that the finished packaging materials demonstrate properties needed for packaged products. This two day seminar covers various lamination technologies, process variables, testing procedures, upstream and downstream processes and troubleshooting techniques.

Benefits of Attending

- Learn how physics and chemistry apply to achieving a good lamination
- Learn the layout of lamination equipment
- Learn techniques to troubleshoot lamination problems
- > Learn the differences between lamination processes
- Learn about the what's needed upstream and downstream for successful laminates
- View the laminating process through technical data, graphs and formulas

Who Should Attend:

Personnel involved in the R&D, manufacture, testing, product development, process support, design, use and sales of multi-layer packaging who wish to jumpstart or round out their knowledge of lamination. Flexible packaging laminations are used in the food, pharmaceutical, medical device, consumer goods, and industrial goods industries. The seminar is intended to be an introduction into laminating technology for engineers and others who support, troubleshoot, specify buy and sell flexible packaging laminations.

Concepts Covered

- Wetting and its impact on adhesion
- Extrusion vs. adhesive lamination
- Rationale for lamination
- Bond testing
- Bond failure mechanisms
- Alternatives to lamination

Lamination of Flexible Materials for Packaging

Course Syllabus -

DAY 1

Introduction **Fundamental definitions** Why do we laminate? Packages that are laminated **Multilayer tactics** Adhesive lamination Extrusion lamination Coating Coextrusion **Materials** Webs that are laminated **Plastics and other polymers** Metals Papers Multilayer materials Adhesives Other materials that impact laminations Inks Additives **Primers** Layer functionality Strength/stiffness Print carrier Primer Adhesive Barrier Sealant Science of lamination Surface chemistry Surface treatment Flame Corona / "plasma" Priming Adhesion Adhesive chemistry Heat transfer

DAY 2

Unit op	perations in laminating
	Winding and web transport
	Treatment
Roll Co	•
	Extrusion Other coating techniques
	Drying
Lamina	iting
Curing	
Heating	g
Cooling	g
Specifi	c lamination techniques in more detail
	Solvent-based adhesive lamination
	Water-based adhesive lamination
	t-free adhesive lamination
Extrusi	ion lamination
Lamina	ating machine layouts
	Simplex (Two ply) Duplex / Tandem (Three ply)
	Extrusion/Adhesive combinations
	Press/laminators
Testing	of laminations
	Green tack
	Curing and cured bonds
	Peelable bonds vs. destruct bonds
	Coefficient of friction Heat resistance
	Sealability
Tensile	behavior
Barrier	testing and calculations
Perforr	nance testing
Trouble	eshooting
	General tactics for troubleshooting
	Gallery of lamination defects
	What can go wrong:
Delami	
	Lamination spots/bubbles Heat resistance
	Chemical resistance
Discolo	pration
	Lack of performance
	Troubleshooting case studies